If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+10t-15=0
a = 16; b = 10; c = -15;
Δ = b2-4ac
Δ = 102-4·16·(-15)
Δ = 1060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1060}=\sqrt{4*265}=\sqrt{4}*\sqrt{265}=2\sqrt{265}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{265}}{2*16}=\frac{-10-2\sqrt{265}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{265}}{2*16}=\frac{-10+2\sqrt{265}}{32} $
| -4x+14=33 | | 13/30=5/x | | y+11/29=-6/29 | | 7=a/7-9 | | 2+5x=-10+2x | | 200=16(6t-3)= | | x5-13=30 | | x+40+x60=180 | | 6+17x-2=7x+139-5x | | 3(x-2)-2(3x+4)=x=2 | | 38+2x+125=x163 | | 4.6t-4.9t^2=0 | | |x/2-2|=6 | | 2b-0.7=3b | | x+40+60x=180 | | 9/10=4/y-2 | | 2(u+8)=18 | | v/3-14=-1 | | 2/x-6=10 | | -186=-65-11x | | 10x=(6x+5) | | 63+16m=91 | | v/3-14=11 | | -3=5(x+3) | | 131=-5x+3(-3x-3) | | 0.8x+5=0.29(40-x) | | -19=n-8 | | 8y+2=2Y-10 | | -2=-5t+10+2 | | 9p-10=7p-2 | | 1=m/12 | | 38=x/4+15 |